Poster Session B: Middleware & Tools for Embedded Computing

Larry Bergman

Jet Propulsion Laboratory

California Institute of Technology

September 21, 2000

11:30am - 12:10pm

What is Middleware?

- An emerging area of importance that surprisingly is still not too well defined!
- System software sitting between the OS and applications. Examples include:
 - parallel tools and communications
 - fault protection methods
 - real-time runtime systems environment
 - optimization, adaptive, or evolveable software
 - distributed infrastructure services

Tools

- Graphical user interfaces
- Debuggers
- Performance Optimizers
- Autocoding
- Compilers and Cross compilers
- Interpretive languages

Key Themes

- Fault management middleware
- Real time adaptive QoS middleware
- COTS signal processing design methods
- Integration of VSIPL and OpenMP with interpretive languages for parallel image processing applications
- Graphical programming environments for systems with hardware accelerators
- Autocoding toolsets for parallel applications

Key Themes 2

- C++ expression templates for efficient parallel programming
- Dynamic runtime environments and compilers

- PAPER B.1: Supercomputing Onboard the Next Generation Space Telescope, Maria Nieto-Santisteba (Space Telescope Science Institute)
- PAPER B.2: Towards Real-Time Adaptive QoS Management in Middleware for Embedded Computing Systems, Christopher Gill (Washington University)

- PAPER B.3: Digital Radio Design Using GEDAE, Richard Jaffe (L-3 Communications Systems East)
- PAPER B.4: Integration of VSIPL and OpenMP into a Parallel Image Processing Environment, Jeremy Kepner (MIT Lincoln Laboratory)

- PAPER B.5: Design Flow for Automatic Mapping of Graphical Programming Applications to Adaptive Computing Systems, Sze-Wei Ong (University of Tennessee)
- PAPER B.6: Autocoding Toolset Automating Parallel Code Generation from
 Graphical Design Specifications,
 Christopher Robbins

- PAPER B.7: C++ Expression Templates in an Embedded, Parallel, Real-Time Signal Processing Library, Edward Rutledge (MIT Lincoln Laboratory)
- PAPER B.8: Model Based Parallel Programming with Profile-Guided Application Optimization, Jeffrey Smith (Mercury Computer Systems)

- PAPER 9: Component Based Operating Systems for Embedded and Real-Time Systems, John Stankovic (University of Virginia)
- PAPER 10: Advanced Radar Signal
 Processing on General-Purpose Commercial
 Multiprocessor Systems, Thomas Steck
 (Johns Hopkins University)